

Fig. 1. Flowchart to compute waveguide modes in homogeneous isotropic media.

- [2] E. Bahar and B. S. Agrawal, "A generalized WKB approach to propagation in inhomogeneous dielectric waveguides," *Radio Sci.*, vol. 12, no. 11, pp. 611-618, 1977.
- [3] E. Bahar and B. S. Agrawal, "Application of generalized characteristic vectors to problems of propagation in clad inhomogeneous dielectric waveguides," *IEEE Trans. Microwave Theory Tech.*, vol. MTT-27, pp. 345-352, Apr. 1979.
- [4] M. Hashimoto, "A perturbational method for the analysis of wave propagation in inhomogeneous dielectric waveguides with perturbed media," *IEEE Trans. Microwave Theory Tech.*, vol. MTT-24, pp. 559-566, 1976.
- [5] —, "Propagation of cladded inhomogeneous dielectric waveguides," *IEEE Trans. Microwave Theory Tech.*, vol. MTT-24, pp. 404-409, 1976.
- [6] M. Abramowitz and I. A. Stegun, *Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables*. Applied Mathematics Series, NBS, U.S. Govt. Printing Office, Washington, DC, 1964.

Computation of the Shielded and Coupled Microstrip Parameters in Suspended and Conventional Form

PURPOSE:

These computer programs can compute effective dielectric constant, characteristic impedance, dielectric losses, and conductor losses of shielded microstrip and coupled microstrip for the two different conditions of suspended or conventional substrates.

Manuscript received August 14, 1978; revised March 28, 1979. Further information concerning this program can be obtained from the author.

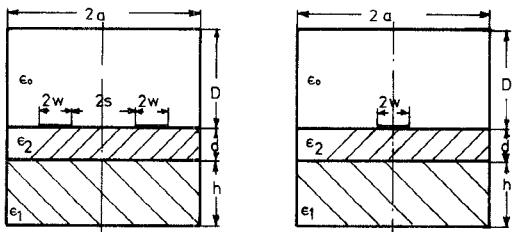


Fig. 1.

LANGUAGE: Fortran IV, IBM 360, ZERO1—343 Cards
ZERO2—755 Cards HIGH1—471 Cards, and HIGH2—894 Cards.

AUTHORS: D. Mirshekar-Syahkal and J. Brian Davies, Department of Electronic and Electrical Engineering, University College Torrington Place, London WC1E 7JE, England.

AVAILABILITY: Listings and magnetic tapes of the source program can be obtained from J. B. Davies for the next two years.

DESCRIPTION: These four computer programs are classified into two groups which are complementary to each other. The method of computation is based on the spectral-domain approach [1]–[3]. ZERO1 and ZERO2 are the zeroth-order solutions which can be used in most practical cases. HIGH1 and HIGH2 calculate all the above-mentioned parameters more accurately, since higher order solutions are now considered. Computation time for the ZERO1 and ZERO2 is very much less than for the HIGH1 and HIGH2, ranging from 1 to 6 s on an IBM 360/65. The problems being solved can be seen by considering Fig. 1. Fig. 1(a) shows a typical shielded microstrip on the two layers of substrate, and the same situation is seen in Fig. 1(b) for the coupled microstrip. Removing the first substrate (by putting $h=0$) gives a conventional form of the shielded or coupled microstrip, while letting $h \neq 0$ and $\epsilon_1 \neq \epsilon_0$ gives shielded suspended-substrate versions of microstrip or coupled microstrip. Program ZERO1 (or HIGH1 for higher accuracy) computes both effective dielectric and propagation constants of the line of interest. The method of the spectral domain gives a hybrid-mode solution to these structures, and hence the dispersive nature of them is properly dealt with [1], [3]. ZERO2 (and similarly, HIGH2) computes characteristic impedance, conductor and dielectric losses where, for the last one a perturbation formula is employed that assumes a low-loss substrate. Again, all the parameters are frequency dependent. By suitable choice of dimensions, an open version of the same structure can be examined effectively. All the other information is documented via the comment cards in the computer programs.

REFERENCES

- [1] J. B. Davies and D. Mirshekar-Syahkal, "Spectral domain solution of arbitrary coplanar transmission line with multilayer substrate," *IEEE Trans. Microwave Theory Tech.*, vol. MTT-25, pp. 143–146, Feb. 1977.
- [2] D. Mirshekar-Syahkal and J. B. Davies, "Accurate solution of microstrip and coplanar structures for dispersion and for dielectric and conductor losses," *IEEE Trans. Microwave Theory Tech.*, vol. MTT-27, pp. 694–699 July 1979.
- [3] T. Itoh and R. Mittra, "A technique for computing dispersion characteristics of shielded microstrip lines," *IEEE Trans. Microwave Theory Tech.*, vol. MTT-22, pp. 896–898, Oct. 1974.

Computer Analysis of Microwave and Millimeter-Wave Mixers

PURPOSE:

The program analyzes the performance of single-diode microwave and millimeter-wave mixers. A Schottky-barrier diode is assumed, whose $I-V$ and CV characteristics are known. The diode mount is taken to be lossless, but may have external loads at any number of sideband and local oscillator (LO) harmonic frequencies.

FORTRAN IV H (IBM).

P. H. Siegel is with the Graduate Department of Electrical Engineering, Columbia University, New York, NY 10019, and A. R. Kerr is with the Goddard Institute for Space Studies, NASA Goddard Space Flight Center, New York, NY 10025.

AVAILABILITY:

Complete description of the program, including a listing and sample run, is also contained in NASA Technical Memorandum No. 80324 [1]. Card decks can be obtained from the authors at Goddard Institute for Space Studies, NASA Goddard Space Flight Center, New York, NY 10025.

DESCRIPTION:

Following recent work on the theory of microwave and millimeter-wave mixers [2], [3] a user oriented mixer analysis program has been written which computes the conversion loss and noise temperature of a mixer, given the diode characteristics and embedding circuit impedances. The program first performs a nonlinear circuit analysis to determine the diode conductance and capacitance waveforms produced by the local oscillator. A small-signal linear analysis is then used to find the input and output impedances and the conversion loss between the mixer ports. Finally, the thermal and shot noise contributions from the diode are determined.

The most difficult step in analyzing a mixer is finding the diode conductance and capacitance waveforms produced by the LO. The technique used in the program is an extension of one developed previously in our laboratory [4], in which the nonlinear problem is solved by considering a series of reflections between the diode and the embedding network. The algorithm operates in the time domain when considering the diode and in the frequency domain when dealing with the embedding network.

The small-signal analysis follows the method of Held and Kerr [2], which is an extension of the original theory of frequency conversion put forward by Torrey and Whitmer [5]. The small-signal properties of the mixer are derived from a knowledge of the diode conductance and capacitance waveforms and the impedance of the embedding network.

The theory of noise in Schottky diode mixers was investigated and put into a form suitable for computer analysis by Held and Kerr [2]. It is based on the earlier work of Uhlir [6] and Dragone [7]. The shot noise of a periodically pumped diode has partially correlated components at the various sideband frequencies. The

Manuscript received August 9, 1979; revised October 20, 1979.

Further information concerning this program can be obtained from the author.